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Abstract. Scientific fields that are interested in faces have developed
their own sets of concepts and procedures for understanding how a tar-
get model system (be it a person or algorithm) perceives a face under
varying conditions. In computer vision, this has largely been in the form
of dataset evaluation for recognition tasks where summary statistics are
used to measure progress. While aggregate performance has continued
to improve, understanding individual causes of failure has been difficult,
as it is not always clear why a particular face fails to be recognized, or
why an impostor is recognized by an algorithm. Importantly, other fields
studying vision have addressed this via the use of visual psychophysics:
the controlled manipulation of stimuli and careful study of the responses
they evoke in a model system. In this paper, we suggest that visual
psychophysics is a viable methodology for making face recognition algo-
rithms more explainable. A comprehensive set of procedures is developed
for assessing face recognition algorithm behavior, which is then deployed
over state-of-the-art convolutional neural networks and more basic, yet
still widely used, shallow and handcrafted feature-based approaches.

Keywords: Face Recognition, Biometrics, Explainable AI, Visual Psy-
chophysics, Biometric Menagerie

1 Introduction

With much fanfare, Apple unveiled its Face ID product for the iPhone X in the
Fall of 2017 at what was supposed to be a highly scripted event for the media.
Touted as one of the most sophisticated facial recognition capabilities available
to consumers, Face ID was designed to tolerate the wide range of user behav-
iors and environmental conditions that can be expected in a mobile biometrics
setting. Remarkably, during the on-stage demo, Face ID failed [1]. Immediate
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Fig. 1. Visual Pyschophysics [3,4,5] helps us explain algorithm behavior in a way that
traditional dataset evaluation (a) cannot. Our proposed methodology introduces a theo-
retical mapping between elements of psychopysical testing and the biometric menagerie
paradigm [6], where a shepherd function first isolates cooperative users (“sheep”) from
all others (b). From a perfect matching scenario, the images of the sheep are incre-
mentally perturbed using a chosen image transformation, and item-response curves are
plotted so that points of failure can be identified (c). The results can then be used to
explain why matching works for some input images, but not others (d).

speculation, especially from those with some familiarity with biometrics, cen-
tered around the possibility of a false negative, where an enrolled user failed to
be recognized. After all, it was very dark on stage, with a harsh spotlight on the
presenter, whose appearance was a bit more polished than usual — all variables
that conceivably were not in the training set that the deep learning-based model
behind Face ID was trained on. Apple, for its part, released a statement claiming
that it was too many imposter authentication attempts before the demo that
caused the problem [2]. Of course, that did little to satisfy the skeptics.

This controversy highlights a critical difficulty now facing the computer vision
community: what is the true source of a problem when the object of study is a
black box? While Apple may have access to the internals of its phones, ordinary
users do not. But even with direct access to an algorithm, we can’t always get
what we want when it comes to an understanding of the conditions that lead
to failure [7,8]. Given the fact that face recognition is one of the most common
user-facing applications in computer vision, the ability to diagnose problems and
validate claims about algorithm design and performance is desirable from the
perspective of both the researcher and administrator charged with operating such
systems. This is exactly why we want AI for face recognition to be explainable. In
this paper, we look at a new methodology for doing this with any face recognition
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algorithm that takes an image as input. But first, let us consider the way we
currently use evaluation procedures to try to understand the output of face
recognition systems.

The development cycle of face recognition algorithms relies on large-scale
datasets. Progress is measured in a dataset context via summary statistics (e.g.,
false positive rate, true positive rate, identification rate) computed over an eval-
uation set or n folds partitioned [9] from the evaluation set and expressed
as a ROC or CMC curve (Fig. 1, Panel a). Such datasets have become even
more important with the rise of machine learning, where both large training
and evaluation sets are needed. For face verification (1:1 matching), there are
a number of datasets that brought performance up to usable levels in con-
trolled settings with cooperative subjects [10,11,12,13,14]. More recently, web-
scale data [15,16,17,18,19,20,21] has been used to investigate more difficult recog-
nition settings including face identification (1:N matching) and challenging im-
postor settings. There is a continuing push for larger datasets, which does not
always address the problems observed in the algorithms trained over them.
While aggregate performance has continued to improve, understanding individ-
ual causes of failure remains difficult, as it is not always clear why a particular
face fails to be recognized, or why an impostor is recognized by an algorithm
when considering a summary statistic.

Importantly, other fields studying vision have addressed this via the use of
visual psychophysics: the controlled manipulation of stimuli and careful study
of the responses they evoke in a model system [3,4,5]. In particular, the field of
psychology has developed specific concepts and procedures related to visual psy-
chophysics for the study of the human face and how it is perceived [22,23,24,25].
Instead of inferring performance from summary statistics expressed as curves
like ROC or CMC, visual psychophysics allows us to view performance over a
comprehensive range of conditions, permitting an experimenter to pinpoint the
exact condition that results in failure. The gold standard for face recognition ex-
perimentation with people is the Cambridge Face Memory Test [23], which uses
progressively degraded variations of faces to impede recognition. It has led to
landmark studies on prosopagnosia (the inability to recognize a face) [26], super
recognizers (people with an uncanny ability to recognize faces) [27], and face
recognition ability and heritability [28]. Similarly, visual psychophysics has been
used to study the role of holistic features in recognition by swapping parts to
break the recognition ability [22]. More recent work has moved into the realm of
photo-realistic 3D face synthesis, where changes in face perception can be stud-
ied by varying aspects of facial anatomy [24] and the age of the face used as a
stimulus [25]. Given the breadth of its applicability, psychophysics also turns out
to be an extremely powerful regime for explaining the behavior of algorithms.

We already see visual psychophysics becoming an alternate way of studying
algorithm behavior in other areas of computer vision such as object recogni-
tion [29], face detection [30], and reinforcement learning [31]. However, no work
has been undertaken yet in the area of face recognition. In this paper, we propose
to address this by building a bridge from vision science to biometrics. Working
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from a recently established framework for conducting psychophysics experiments
on computer vision algorithms [29] and infusing it with the proper methods from
visual psychophysics for the study of face recognition in people, we fill in the
missing pieces for automatic face recognition. Specifically, this involves a the-
oretical mapping between elements of psychopysical testing and the biometric
menagerie paradigm [6], where cooperative users (“sheep”) are isolated (Fig. 1,
Panel b), and incremental perturbations degrade their performance (Fig. 1, Panel
c). Results gathered from psychophysics experiments making use of highly con-
trolled procedurally generated stimuli can then inform the way we should use a
face recognition algorithm by explaining its failure modes (Fig. 1, Panel d).

2 Related Work

Explainable AI. An increasing emphasis on artificial neural networks in AI has
resulted in a corresponding uptick in interest in explaining how trained models
work. With respect to representations, Zeiler and Fergus [32] suggested that a
multi-layer deconvolutional network can be used to project feature activations
of a target convolutional network (CNN) back to pixel-space, thus allowing a
researcher to reverse engineer the stimuli that excite the feature-maps at any
layer in the CNN. Subsequent work by Mahendran and Vedaldi [33] generalized
the understanding of representations via the analysis of the representation itself
coupled with a natural image prior. With respect to decision making, Ribeiro et
al. [8] have introduced a framework for approximating any classifier with an ex-
plicitly interpretable model. In a different, but related tactic, Fong et al. [34] use
image perturbations to localize image regions relevant to classification. Image
perturbations will form an important part of our methodology, described below
in Sec. 3. A number of alternative regimes have also been proposed, including a
sampling-based strategy that can be applied to face recognition algorithms [35],
sampling coupled with reinforcement learning [7], and a comprehensive prob-
abilistic programming framework [36]. What we propose in this paper is not
meant to be a replacement for any existing method for explaining an AI model,
and can work in concert with any of the above methods.

Psychophysics for Computer Vision. The application of psychophysics
to computer vision has largely been an outgrowth of interdisciplinary work be-
tween brain scientists and computer scientists looking to build explanatory mod-
els that are consistent with observed behavior in animals and people. A recent
example of this is the work of Rajalingham et al. [37], which compares the
recognition behavior of monkeys, people and CNNs, noting that CNNs do not
account for the image-level behavioral patterns of primates. Other have car-
ried out studies using just humans as a reference point, with similar conclu-
sions [38,39,40,41]. With respect to approaches designed specifically to perform
psychophysics on computer vision algorithms, a flexible framework is PsyPhy,
introduced by RichardWebster et al. [29]. PysPhy facilitates a psychophysical
analysis for object recognition through the use of item-response theory. We build
from that work to support a related item-response analysis for face recognition.
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Outside of research to explain the mechanisms of AI algorithms, other work in
computer vision has sought to infuse psychophysical measurements into machine
learning models [30,42]. Data in several of these studies has relied on the popu-
lar crowdsourced psychophysics website TestMyBrain.org [43]. In this work, we
make use of a similar human-testing platform for comparison experiments.

Methods from Psychology Applied to Biometrics.While there is grow-
ing interest in what psychology can teach computer vision at large, the biometrics
community was early to adopt some of its methods. Sinha et al. [44] outlined
19 findings from human vision that have important consequences for automatic
face recognition. Several of these findings have served as direct inspiration for
the adoption of CNNs for face recognition. A significant outgrowth of NIST-
run face recognition evaluations has been a series of human vs. computer per-
formance tests [45,46,47,48,49]. Even though these studies have not made use
of psychophysics, they still shed new light on face recognition capabilities. In
some cases such as changes in illumination [45,46], good quality images [47], and
matching frontal faces in still images [48], algorithms have been shown to be
superior. However, one should keep in mind that these are controlled (or mostly
controlled) verification settings, where images were intentionally acquired to re-
flect operational matching scenarios. In other cases, especially with more nat-
uralistic data and video matching scenarios [48,49], humans are shown to be
superior. Studies such as these have established human perception as a measure-
able baseline for evaluating face recognition algorithms. We also look at human
vs. algorithm performance as a baseline in this paper.

Biometrics and Perturbed Inputs. Many studies have sought to sim-
ulate real-world conditions that reduce matching performance. This has often
taken the form of perturbations applied to the pixels on a face image — the pri-
mary form of transformation we will consider for our psychophysics experiments.
Karahan et al. [50] and Grm et al. [51] have studied the impact of incrementally
perturbing face images for transformations like Gaussian blur, noise, occlusion,
contrast and color balance. In order to compensate for Gaussian blur, Ding
and Tao [52] perturb sequences of face images for the purpose of learning blur-
insensitive features within a CNN model. These experimental studies share an
underlying motivation with this work, but are qualitatively and quantitatively
different from the item-response-based approach we describe.

3 Psychophysics for Face Recognition Algorithms

In the M -alternative forced-choice match-to-sample (M -AFC) psychophysics
procedure in psychology [5], a sample stimulus (e.g., visual, auditory, or tac-
tile) is used to elicit a perceptual response from a subject. The subject is then
given a refractory period to allow their response to return to neutral. Once their
response returns to neutral, the subject is presented with an alternate stimulus
and given, if needed, another refractory period. This process is then repeated for
a total of M unique alternate stimuli. Finally, the subject is forced to choose one
of the alternate stimuli that best matched the sample stimulus. This is where
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the procedure name M -alternative forced-choice match-to-sample comes from.
By carefully linking sample or alternate stimuli to a single condition at a specific
stimulus level, a scientist running the experiment can measure mean or median
accuracy achieved at each of the observed stimulus levels across all subjects. To-
gether, these stimulus levels and their aggregated accuracy yield an interpretable
item-response curve [3] (see Fig. 1, Panel c for an example).

RichardWebster et al. [29] introduced a technique using the M -AFC method
to produce item-response curves for general object classification models that
involves procedurally rendering objects. The process consists of two steps: (1)
the identification of a preferred view and (2) the generation of an item-response
curve. A preferred view is an extension of a canonical view [53], the theory
that humans naturally prefer similar inter-class object orientations when asked
for the best orientation which maximizes discriminability. The preferred view
serves as the initial orientation of the procedurally rendered objects, allowing
transformations such as rotation or scaling to guarantee a degradation of model
performance. When item-response curves are generated, a modified M -AFC pro-
cedure is invoked that maps the alternate choices to the output of a classifier.
However, instead of explicitly presenting alternate choices, the alternate choices
are implicitely the learned classes of the classifier. Thus accuracy is computed
by how frequently the correct class was chosen.

Although psychophysics for face recognition uses the same foundational M -
AFC match-to-sample concepts, in practice it is very different than the psy-
chophysics procedure for general object recognition. To begin with, an individual
trial of the M -AFC procedure described above for human subjects is identical to
the face identification procedure of biometrics. A face is acquired, and the system
is queried to determine the identity of the face by matching the acquired image
to enrolled faces within the system. Thus, a single M -AFC match-to-sample trial
is equivalent to 1:N identification in biometrics. However, one difference between
an algorithm performing 1:N matching and a human performing the same task
is the need to set a threshold for the decision of “match” or “non-match” in the
case of the algorithm (to reject match instances with insufficiently high scores).

Like any good scientific method, a method from psychophysics attempts to
isolate a single variable to observe the effect it has on the rest of the system. In
psychophysics experiments for face recognition, we call the isolated variable the
perturbation level, which represents the degree of transformation applied with
a perturbation function directly to an identity or to the image containing an
identity. Thus, the first step in performing psychophysics for face recognition
systems is to remove identities from an initial dataset that consistently cause
false matches or false non-matches — errors that are already inherent within
the matching process and would be a confound to studying the effect of the
transformation. Doddington et al. [54] formally grouped users interacting with a
biometric system into four classes whimsically named after farm animals, which
together are called the biometric menagerie [55,6]. The biometric menagerie
consists of goats (identities that are difficult to match), lambs (identities that
are easily impersonated), wolves (identities that impersonate easily), and finally
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Algorithm 1 H(Υ, I): a “herding” function to isolate Doddington et al.’s [54]
sheep from the goats, lambs, and wolves

Input: Υ , a “shepherd” function for a face recognition algorithm
Input: I, a set of input identities from a dataset
1: S ← Υ (I, I) . similarity matrix

2: S ← (S+Sᵀ)
2

. enforce symmetry
3: th ← optimize loss function λ with TPE . Hyperopt [56,57,58]
4: Ih ← λ(S, th) . the “sheep” identities produced by λ

Output: th, the optimal threshold to produce Ih
Output: Ih, the “sheep” identities isolated by the optimal threshold th

sheep (identities that match well to themselves but poorly to others). Since we
want to remove all identities that lead to errors, we must remove the wolves,
goats, and lambs. We call this the “herding” process.

The herding function, H (Alg. 1), takes a set of input identities from an
initial dataset, I, and a “shepherd” function, Υ , as input, and determines which
identities Υ considers sheep. The Υ function is a wrapper function to a face
recognition algorithm, f , and accepts two sets of identities: Ip the probe set and
Ig the gallery set. It returns a standard similarity matrix where Ip is row-wise and
Ig is column-wise. An example shepherd function can be seen in Alg. 2. During
the herding step, the input set I is split into Ip and Ig, which are used as input
to Υ . The herding function itself is quite simple: it obtains a similarity matrix
from the shepherd function, forces matrix symmetry, and then optimizes the loss
function, λ (Alg. 3), for 250 iterations with Hyperopt’s implementation of the
Tree-structured Parzen Estimator (TPE) hyperparameter optimizer [56,57,58].
More complicated is the loss function λ that the herding function uses.

λ takes as input a similarity matrix, S, and a threshold, t. The first step,
thresholding the matrix, is standard in biometrics applications. However, the
next step is not. The thresholded matrix is then XORed with an identity matrix,
I, to isolate all of the false match and false non-match pairs of identities (I
represents the correct true matches). This new matrix can be considered an
adjacency matrix, G, where all of the edges represent the false matches and false
non-matches and each vertex is an identity.

The next step is to selectively remove vertices / identities until no edges
remain while also removing as small a number of identities as possible. A strategy
inspired by graph cuts allows us to sort the vertices by degree, remove the vertex
with the highest degree from G, and repeat until no edges in G remain (see Supp.
Alg. 1 for the exact description1). At the end,G will be a completely disconnected
graph, where no remaining identity will cause a false match or false non-match
with any other remaining identity. By definition, all of the remaining identities
are sheep. The returned loss value is the number of identities removed, where the

1 Supp. mat. available at http://www.bjrichardwebster.com/papers/menagerie/

supp
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Algorithm 2 Υf (Ip, Ig): a “shepherd” function that produces a similarity matrix
for the face recognition function f

Input: f , a face recognition function that produces a feature representation
Input: Ip, a set of probe identities
Input: Ig, a set of gallery identities
1: Rp ← i ∈ Ip : f(i) . feature representation for each identity
2: Rg ← i ∈ Ig : f(i)
3: S ← rp ∈ Rp, rg ∈ Rg : dist(rp, rg) . matrix of distances
4: S ← normalize(S) . normalize distances to standard similarity matrix
Output: S, the similarity matrix

Algorithm 3 λ(S, t): a loss function that favors more sheep, and favors a lower
false match rate (FMR) over false non-match rate (FNMR)

Input: S, similarity matrix
Input: t, a threshold
1: M ← S ≥ t

2: M ←M ⊕ I . isolate FM and FNM pairs
3: G = (V,E) from M . adjacency list
4: ν ← |V |
5: while |E| > 0 do . remove goats, lambs, and wolves
6: vr ← argmaxv∈V deg(v)
7: remove vr from V . remove the vertex and connected edges from G

8: end while

9: l← ν − |V | . number of goats, lambs, and wolves removed
10: l← l + (1− 0.99999 ∗ t) . favor lower FMR over FNMR
Output: l, the loss value

function favors a lower false match rate, i.e., higher thresholds are favored. After
λ is optimized, the optimal threshold th and sheep identities Ih are returned.

The sheep identities Ih and the threshold th serve as two of the inputs to
the item-response point generator function Φ (Alg. 4). Φ generates a point on
an item-response curve that represents the rank one match rate for a specific
perturbation function, T , and its respective perturbation level. The perturba-
tion function takes an image and a perturbation level as input, applies some
transformation to the image, and returns the transformed image. In the context
of the biometric menagerie, this function is analogous to “perturbing” a sheep
(dying the wool, shearing the wool, etc.) and asking its shepherd if it can prop-
erly identify the sheep. Thus Φ also takes Υ as a parameter. Φ uses T to perturb
each input identity in Ih to create the set of perturbed probe identities for 1:N
identification. The remaining steps of Φ are standard to face recognition sys-
tems operating in the identification mode: obtain similarity matrix from probe
to gallery pairs, threshold the matrix, and calculate the match rate. The return
value of the Φ function is an x, y coordinate pair {s, α} for one item-response
point, where s represents the perturbation level and α is the match rate.
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Algorithm 4 ΦT (Υ, Ih, th, δ): an item-response point generation function for
any image transformation function T (i, δ)

Input: Υ , a “shepherd” function for a facial recognition model
Input: Ih, the “sheep” identities for the found threshold th
Input: th, the optimal threshold to produce Ih
Input: δ, the stimulus level
1: I ′h ← i ∈ Ih : T (i, δ) . perturb identities to create probes
2: S ← Υ (I ′h, Ih) . similarity matrix
3: M ← S ≥ th
4: α← |M∧I|

|Ih|
. obtain match rate using identity matrix I

Output: {s, α}, an x, y coordinate pair (stimulus level, match rate)

Algorithm 5 CT (Υ, Ih, th, n, bl, bu): an item-response curve generation function
for any type of “shepherd” function

Input: Υ , a “shepherd” function for a facial recognition model
Input: th, the optimal threshold to produce Ih
Input: Ih, the “sheep” identities for the found threshold th
Input: n, the number of stimulus levels
Input: bl and bu, the lower and upper bound values of the stimulus levels
1: Let ∆ be n log-spaced stimulus levels from bl to bu
2: k ←

⋃

δ∈∆

{ΦT (Υ, Ih, th, δ)}

Output: k, the item-response curve

A shepherd’s behavior for a set of sheep identities can be represented with
an item-response curve (a collection of points obtained from Φ), which is an
interpretable representation of the shepherd’s behavior in response to perturba-
tion. For biometric identification, the x-axis is a series of values that represent a
perturbation level from the original sheep identities and the y-axis is the match
rate. To produce the item-response curves, the function C (Alg. 5) is called once
for each transformation type. C repeatedly calls a point generated with Φ (Alg.
4) to create one point for each stimulus level from the least amount of pertur-
bation, bl, to the most, bu (bl are the non-transformed sheep identities). The
parameter n is the number of stimulus levels to be used to produce the points
on the match-response curve and are typically log-spaced to give finer precision
near the non-transformed sheep identities. The final parameter w is the number
of identities examined at each stimulus level where w ∈ [1, |Ih|].

4 Experiments

Experiments were designed with four distinct objectives in mind: (1) to survey
the performance of deep CNNs and other alternative models from the literature;
(2) to look more closely at a surprising finding in order to explain the observed
model behavior; (3) to study networks with stochastic outputs, which are preva-
lent in Bayesian analysis; and (4) to compare human vs. algorithm performance.
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For all experiments, we made use of the following face recognition algorithms:
VGG-Face [59], FaceNet [60], OpenFace [61], a simple three-layer CNN trained
via high-throughput search of random weights [62] (labeled “slmsimple” below),
and OpenBR 1.1.0 [63], which makes use of handcrafted features. For each of the
networks, the final feature layer was used with normalized cosine similarity as the
similarity metric2. All used models were used as-is from their corresponding au-
thors, with no additional fine-tuning. A complete set of plots for all experiments
can be found in the supplemental material.

Data Generation. The following transformations were applied to 2D im-
ages from the LFW dataset [64]: Gaussian blur, linear occlusion, salt & pepper
noise, Gaussian noise, brown noise, pink noise, brightness, contrast, and sharp-
ness. Note that we intentionally chose LFW because state-of-the-art algorithms
have reached ceiling performance on it. The psychophysics testing regime makes
it far more difficult for the algorithms, depending on the chosen transformation.
Each face recognition algorithm was asked to “herd” 1000 initial images be-
fore item-response curve generation. All algorithms except OpenBR recognized
all the initial images as sheep (see Supp. Sect. 2 for a breakdown). For each
transformation, we generated 200 different log-spaced stimulus levels, using each
algorithm’s choice of sheep, to create a corresponding item-response curve. In all,
this resulted in ∼5.5million unique images and ∼13.7 billion image comparisons.

Inspired by earlier work in psychology [24,25,65] making use of the FaceGen
software package [66], we used it to apply transformations related to emotion
and expression. A complete list can be found in the supplemental material. Each
face algorithm selected sheep from 220 initial images (all face textures provided
by FaceGen, mapped to its “average” 3D “zero” model) for item-response curve
generation. All chose 206 sheep, with a nearly identical selection by each (see
Supp. Sect. 3 for a complete list). 50 stimulus levels were rendered for each image,
resulting in ∼400, 000 unique 3D images and ∼17.5 billion image comparisons.

Identification with 2D Images. Given recent results on datasets, one
would expect that the deep CNNs (FaceNet, OpenFace, and VGG-Face) would
be the best performers on an M -AFC task, following by the shallower net-
work (slmsimple), and then the approach that makes use of handcrafted features
(OpenBR). Surprisingly, this is not what we observed for any of the experiments
(Figs. 2 and 4; Supp. Figs. 1-2). Overall, VGG-Face is the best performing net-
work, as it is able to withstand the perturbations to a greater degree than the
rest of the algorithms. At some points (e.g., left-hand side of Fig. 2) the per-
turbations have absolutely no effect on VGG-Face, while severely degrading the
performance of other algorithms, signifying strong learned invariance.

Remarkably, the non-deep learning approach OpenBR is not the worst per-
forming algorithm. It turned out to outperform several of the deep networks in
most experiments. This is the kind of finding that would not be apparent from a
CMC or ROC curve calculated from a dataset, where OpenBR is easily outper-
formed by many algorithms across many datasets [67,63]. Why does this occur?
These results indicate that it’s not always possible to rely on large amounts of

2 Source code is available at www.bjrichardwebster.com/papers/menagerie/code
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Fig. 2. A selection of item-response curves for the M -AFC task using data from
the LFW dataset [64]. Each experiment used five different face recognition algo-
rithms [59,60,61,62,63]. A perfect curve would be a flat line at the top of the plot.
The images at the bottom of each curve show how the perturbations increase from
right to left, starting with no perturbation (i.e., the original image) for all conditions.
The red dots indicate mean human performance for a selected stimulus level; error bars
are standard error. Curves are normalized so chance is 0 on the y-axis. All plots are
best viewed in color.

training data to learn strongly invariant features — a task that can be differ-
ent from learning representations that perform well on a chosen dataset. The
design of the algorithm is also consequential: OpenBR’s choice of LBP [68] and
SIFT [69] leads to better performance than FaceNet and OpenFace, which each
learned features over hundreds of thousands of faces images.

Identification with 3D Images. Computer graphics allows us to generate
images for which all parameters are known — something not achievable with
2D data. One such parameter, expression, has been widely studied [70,71,72],
but not in the highly incremental manner we propose here. Where exactly do
algorithms break for specific expression changes? We can find this out by con-
trolling the face with graphics (Figs. 3 and 4; Supp. Figs. 3-4). For instance,
for the bodily function of blinking (Fig. 3) VGG-Face and slmsimple are the
best, while this very small change to the visual appearance of the face causes a
significant degradation of matching performance in the three other algorithms.
OpenFace and FaceNet once again have trouble learning invariance from their
training data. This trend holds over several expressions and emotions (Supp.
Figs. 3-4).

OpenFace vs. FaceNet. It is often difficult to assess the claims made by the
developers of machine-learning-based algorithms. During the course of our ex-
perimentation, we discovered an interesting discrepancy between two networks,
FaceNet [60] and OpenFace [61], which both reported to be implementations of
Google’s FaceNet algorithm [20]. While it is good for end-users that deep learning
has, in a sense, become “plug-and-play,” there is also some concern surround-
ing this. It is not always clear if a re-implementation of an algorithm matches
the original specification. Psychophysics can help us find this out. Across all ex-
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Fig. 3. A selection of item-response curves for the M -AFC task using rendered 3D face
models as stimuli [66]. Curves are normalized so chance is 0. Here we see that three of
the algorithms are drastically affected by the simple bodily function of blinking, while
two others are not impacted at all. As in Fig. 2, VGG-Face is once again the best
performing algorithm, but remarkably, we see that the three-layer CNN trained via a
random search for weights (labeled “slmsimple”) works just as well.

periments, FaceNet demonstrates very weak invariance properties compared to
OpenFace (Figs. 3-4; Supp. Figs. 3-4), and fails well before the other algorithms
in most cases. From these results, we can conclude that use of this particular
implementation of Google’s FaceNet should be avoided. But why is it so differ-
ent from OpenFace, and what would be causing it to fail, in spite of it reporting
superior accuracy on LFW (0.992 for FaceNet vs. 0.9292 for OpenFace)?

One can find three key differences in the code and data — after being
prompted to look there by the psychophysics experiments. (1) OpenFace uses
500k training images by combining CASIA-WebFace [17] and FaceScrub [73];
FaceNet uses a subset of MS-Celeb-1M [74] where difficult images that contain
partial occlusion, silhouettes, etc. have been removed as a function of facial land-
mark detection. This is likely the weakest link, as the network does not have an
opportunity to learn invariance to these conditions. (2) OpenFace uses the exact
architecture described by Schroff et al. [20], while FaceNet opts for Inception
ResNet v1 [75]. (3) FaceNet uses a Multi-Task CNN [76] for facial landmark
detection and alignment, while OpenFace uses dlib [77] — which FaceNet inten-
tionally avoids due to its lower yield of faces for the training set. FaceNet may
have hit upon the right combination of network elements for LFW, but it does
not generalize like the original work, which OpenFace is more faithful to.

Weight Perturbation Coupled with Stimulus Perturbation. The pro-
cedure of applying perturbations directly to the weights of a neural network has
an interpretation of Bayesian inference over the weights, and leads to stochastic
output [78,79]. This is potentially important for face recognition because it gives
us another measure of model reliability. To look at the effect of CNN weight
perturbations coupled with stimulus perturbations, we use VGG-Face as a case
study. A percentage of its weights are replaced with a random value from the
normal distribution, N (0, 1), targeting all layers. From Fig. 5, we can see that
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Fig. 4. Two of the algorithms we evaluated, FaceNet [60] and OpenFace [61], both
reported to be an implementation of Google’s FaceNet [20] algorithm. Curiously, we
found major disagreement between them in almost all of our experiments. Note the
gaps between their respective curves in the above plot. This performance gap was not
evident when analyzing their reported accuracy performance on LFW.

both perturbation types have an impact. Under a regime that perturbs just 6%
of the weights (left-hand side of Fig. 5), we can gain a sense that VGG-Face is
stable across models with respect to its performance when processing increasing
levels of contrast. However, too much weight perturbation increases the variance,
leading to undesirable behavior on the perturbed input. On the right-hand side
of Fig. 5, each curve represents the average of five runs when perturbing between
2% and 10% of the weights. Perturbing 10% of the weights breaks the invariant
features of VGG-Face and induces more variance between models. Similar effects
for other transformations can be seen in Supp. Figs. 5-6.

Human Comparisons. As discussed in Sec. 2, there is a rich literature
within biometrics comparing human and algorithm performance. However, thus
far, such studies have not made use of any procedures from visual psychophysics.
Here we fill this gap. To obtain human data points for Figs. 2-5 (the red dots in
the plots), we conducted a study with 14 participants. The task the participants
performed largely followed the standard M -AFC protocol described above: a
participant is briefly shown an image, it is hidden from sight, and then they
are shown three images and directed to choose the image that is most similar
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Fig. 5. Weight perturbations for stochastic model output can be combined with stim-
ulus perturbations for a stronger reliability assessment. (Left) Five independent model
runs where 6% of the weights have been perturbed, with input stimuli reflecting in-
creasing contrast. (Right) Curves represent the average of five runs for three different
levels of weight perturbation from 2% to 10%. Shaded regions are standard error.

to the first one. Each participant performed the task three times for each per-
turbation level. Each set of images within a task was chosen carefully to keep
human performance from being perfect. For both 2D and 3D images, the images
were divided by gender such that participants could not match solely by it [80].
For 3D images, the data was also divided by ethnicity such that it could not be
the sole criterion to match by [81]. To interrupt iconic memory [82], after each
sample image is shown, a scrambled inverse frequency function was applied to
the image to produce colored noise, and shown for 500ms prior to the alternate
choices. 2D images were shown for 50ms and 3D images for 200ms. Consistent
with previous findings [45,46,47,48,49], we observed human performance exceed-
ing or lagging behind algorithm performance, depending on the circumstances.
Humans struggled to identify faces in the 3D context where different identi-
ties are closer in visual appearance, but excelled in the 2D context where there
was greater separation between identities. The plots for Gaussian blur (Fig. 2)
and Decreasing Contrast (Fig. 4) hint at behavioral consistency between AI and
humans in these cases.

5 Conclusion

Given the model capacity of today’s deep neural network-based algorithms, there
is an enormous burden to explain what is learned and how that translates into
algorithm behavior. Psychophysics allows us to do this in a straightforward man-
ner when methods from psychology are adapted to conform to the typical pro-
cedures of biometric matching, as we have shown. Companies launching new
products incorporating face recognition can potentially prevent (or at least mit-
igate) embarrassing incidents like Apple’s botched demo of FaceID by matching
the operational setting of an algorithm to a useable input space. And even if
a company provides an explanation for a product’s failure, anyone can directly
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interrogate it via a psychophysics experiment to find out if those claims are
true. To facilitate this, all source code and data associated with this paper will
be released upon publication. With the recent uptick in psychophysics work for
computer vision [38,30,39,29,40,42,37], we expect to see new face recognition
algorithms start to use these data to improve their performance.
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